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Abstract
In this paper we construct the class of equations associated with a discrete
spectral problem of third order. Among the equations of this class we find
an integrable differential equation on the lattice with exponential nonlinearity.
By considering its associated Darboux transformation we construct an explicit
solution.

PACS numbers: 02.30.Ik, 02.30.-f, 02.30.Jr, 05.45

The Toda lattice equation was the first nonlinear dynamical equation on the lattice which
was proven to be integrable. Toda [1] showed that the equation was associated with a
discretization of the Schrödinger spectral problem, the spectral problem connected to the
best known integrable nonlinear evolution equation, the Korteweg–de Vries equation [2]. A
few years later other integrable equations on the lattice were found: the discrete Nonlinear
Schrödinger equation [3], the discrete sine–Gordon equation [4], the discrete Chiral field
equation [5], etc, whose associated Lax pairs are written mainly in terms of matrices of rank 2.
These equations are discretizations of continuous nonlinear partial differential equations but
are also very important in themselves as many physical problems exist which have an intrinsic
discrete nature.

In the continuous case, few integrable equations, such as the nonlinear Schrödinger
equation, turn out to be very important as they govern the asymptotic behaviour, obtained
via multiscale reductive perturbation techniques, of a large number of physical models [6, 7].
On the contrary, perturbation theory, when some of the variables vary on a lattice, is not so well
developed; some tentative results are known [8] but more work on this needs to be done [9].

The derivation of new nonlinear integrable equations is always very important. The
Gelfand–Dickii hierarchies [10] are the most natural extension of the Schrödinger spectral
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problem and contain many very important integrable nonlinear partial differential equations,
such as the Boussinesq, the Sawada–Kotera and Kaup–Kupershmidt equations. So it seems
natural to investigate their differential–difference counterparts. A partial analysis, though not
complete, in this direction has been carried out by Blaszak and collaborators [11, 12], who
considered fundamentally the Hamiltonian structure of some equations of the Gelfand–Dickii
hierarchies and, in the case of completely discrete systems, by Nijhoff et al [13].

In this letter we consider the simplest discrete spectral problem belonging to the Gelfand–
Dickii class, the extension of the discrete Schrödinger spectral problem:

Lψn = λψn (1)

with

L = E2 + An(t)E + Bn(t) + Cn(t)E
−1 (2)

whereE is the shift operator in the variable n, defined byEjfn = fn+j . Starting from (1), using
the by now standard Lax technique [2,14], we can obtain many of the algebraic properties of the
L operator as the recursive operator which provides us with the class of associated nonlinear
differential–difference equations and the infinity of symmetries [15] and the Bäcklund and
Darboux transformations.

Imposing the following boundary conditions on the fields An, Bn and Cn,

lim
n→±∞An(t) = 0 lim

n→±∞Bn(t) = 0 lim
n→±∞Cn(t) = 1 (3)

and applying the Lax technique, we get the following class of nonlinear differential difference
equations: 


dAn(t)

dt
dBn(t)

dt
dCn(t)

dt


 = f1(L)


 A0

n

B0
n

C0
n


 +

1

2
f2(L)


 An(t)

2Bn(t)

3Cn(t)


 . (4)

For each equation of the class (4) we are able to write down the M operator which provides
us with the corresponding evolution of the eigenfunction of the L operator,

dψn

dt
= −Mψn. (5)

In equation (4) we have

A0
n = γ0

[
Bn − Bn+1 − A2

n + 2An

∞∑
j=0

(−1)jAn+j+1

]
+ γ1[Cn − Cn+2]

+β0(−1)n
[
Bn − Bn+1 + A2

n + 2An

∞∑
j=0

An+j+1

]
− 2β1(−1)nAn

B0
n = γ0[Cn − Cn+1] + γ1[CnAn−1 − Cn+1An] − β0(−1)n[Cn + Cn+1]

C0
n = γ0Cn

[
An−1 − 2

∞∑
j=0

(−1)jAn+j

]
+ γ1Cn[Bn−1 − Bn]

+β0(−1)nCn

[
An + 2

∞∑
j=0

An+j

]
− 2β1(−1)nCn

(6)

where γ0, γ1, β0 and β1 are arbitrary constants, f1(z) and f2(z) are entire functions of their
argument and the recursive operator L is given by a matrix of rank 3 whose components Li,j
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with (i, j = 1, 2, 3) are

L1,1 = Bn

[
1 +

∞∑
j=1

E2j

]
+ An

∞∑
j=1

[
An+2j−1

∞∑
k=0

E2k+2j − An+2j

∞∑
k=1

E2k+2j−1

]

−Bn+1

∞∑
j=1

E2j − An

∞∑
j=1

[
An+2j−2

∞∑
k=0

E2k+2j−1 − An+2j−1

∞∑
k=0

E2k+2j−2

]

L1,2 = An

[
E +

∞∑
j=1

E2j+1 −
∞∑
j=1

E2j

]

L1,3 = E2 − Cn+2

∞∑
j=1

(Cn+j+1)
−1Ej+1 + Cn

∞∑
j=1

(Cn+j−1)
−1Ej−1

L2,1 = Cn

[
E−1 +

∞∑
j=1

E2j−1

]
− Cn+1

∞∑
j=1

E2j

L2,2 = Bn

L2,3 = AnE − AnCn+1

∞∑
j=1

(Cn+j )
−1Ej + An−1Cn

∞∑
j=1

(Cn+j−1)
−1Ej−1,

L3,1 = Cn

∞∑
j=1

[
An+2j−3

∞∑
k=0

E2k+2j−2 − An+2j−2

∞∑
k=1

E2j+2k−3 − An+2j−2

∞∑
k=0

E2j+2k−1

+An+2j−1

∞∑
k=1

E2j+2k−2

]

L3,2 = Cn

[
E−1 +

∞∑
j=1

E2j−1 −
∞∑
j=1

E2j

]

L3,3 = Bn

[
1 − Cn

∞∑
j=1

(Cn+j−1)
−1Ej−1

]
+ Bn−1Cn

∞∑
j=1

(Cn+j−1)
−1Ej−1

(7)

If f2(L) is equal to zero than λ is constant and the corresponding equations (4) are
isospectral deformations of the spectral problem (1), while if it is different from zero than
λ = λ(t) is given by

dλ

dt
= f2(λ) (8)

corresponding to non-isospectral deformations of (1).
The simplest equation of the hierarchy is obtained from (4) for f1(L) = 1, f2(L) = 0,

γ0 = β0 = β1 = 0 and γ1 = 1, and it reads as:
dAn(t)

dt
= Cn(t) − Cn+2(t)

dBn(t)

dt
= Cn(t)An−1(t) − Cn+1(t)An(t)

dCn(t)

dt
= Cn(t)[Bn−1(t) − Bn(t)]

(9)

In the literature this equation has been called the Blaszak–Marciniak lattice [11].
By applying the following transformation:

Cn(t) = e(αn+1(t)−2αn(t)+αn−1(t))

Bn(t) = dαn(t)

dt
− dαn+1(t)

dt

An(t) = d2αn+1

dt2
e(−αn+2(t)+2αn+1(t)−αn(t))

(10)
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we can rewrite equation (9) as an evolution equation of Toda type for the field αn(t), which
reads
d3αn

dt3
= d2αn

dt2

[
dαn−1

dt
− 2

dαn
dt

+
dαn+1

dt

]
+ eαn−2−αn−1−αn+αn+1 − eαn−1−αn−αn+1+αn+2 . (11)

We can extend equations (9) and (11) by considering non-isospectral deformations of the
spectral problem (1). In this case, choosing f1(L) = 1, f2(L) = 2a, where a is a real
constant, γ0 = β0 = β1 = 0 and γ1 = 1, equation (9) becomes

dAn(t)

dt
= Cn(t) − Cn+2(t) + aAn(t)

dBn(t)

dt
= Cn(t)An−1(t) − Cn+1(t)An(t) + 2aBn(t)

dCn(t)

dt
= Cn(t)[Bn−1(t) − Bn(t) + 3a].

(12)

After applying the transformation

Cn(t) = e(αn+1(t)−2αn(t)+αn−1(t))

Bn(t) = dαn(t)

dt
− dαn+1(t)

dt
+ 3an

An(t) =
[

d2αn+1

dt2
− 2a

dαn+1(t)

dt
+ 3a2n(n − 1)

]
e(−αn+2(t)+2αn+1(t)−αn(t))

(13)

to equation (11) we obtain

d3αn

dt3
− 3a

d2αn(t)

dt2
+ 2a2 dαn+1(t)

dt
= 3a3(n − 1)(n − 2)

+

[
d2αn

dt2
− 2a

dαn+1(t)

dt
+ 3a2(n − 1)(n − 2)

][
dαn−1

dt
− 2

dαn
dt

+
dαn+1

dt

]

+ eαn−2−αn−1−αn+αn+1 − eαn−1−αn−αn+1+αn+2 . (14)

Among the other possible choices of the coefficients and initial fields, one is particularly
relevant and it corresponds to set An = Bn = 0 initially. This is the choice which in the case
of the Toda hierarchy provides the Volterra equation [16]. In this case the admissible recursive
operator is L̃ = L3 and the class of equations is given by

dCn(t)

dt
= 3

2
f2(L̃)Cn(t) + f1(L̃)

{
γ0Cn(t)

∞∑
j=0

[Cn+2j−1(t) − Cn+2j (t) − Cn+2j+2(t)

+Cn+2j+3(t)] + γ1Cn(t)[Cn−1(t)Cn−2(t) − Cn+1(t)Cn+2(t)]

}
(15)

where f1 and f2 are entire functions of their argument and γ0 and γ1 are constant coefficients.
As before, if f2 = 0 the obtained equations correspond to isospectral deformation of the
spectral problem (1), otherwise we have non-isospectral deformations.

The case when γ0 = 0, γ1 = 1 and f1(L̃) = 1, f2(L̃) = 0 provides the Volterra-like
equation presented by Bogoyavlenskii [17]:

dCn(t)

dt
= Cn(t)[Cn−1(t)Cn−2(t) − Cn+1(t)Cn+2(t)]. (16)

Equation (16) can be extended by considering non-isospectral deformations of the
corresponding spectral problem. In this case the simplest non-trivial equation is obtained
by choosing f2 = 2K

3 and reads as

dCn(t)

dt
= Cn(t)[Cn−1(t)Cn−2(t) − Cn+1(t)Cn+2(t) + K]. (17)
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The generalized Lax formalism can be used to get the whole hierarchy of Bäcklund
transformations, together with its recursion operator �. However, here we just present a
Darboux transformation from which, taking into account the spectral problem, one can derive
the Bäcklund transformation. By composition one can then construct all the higher-order
Bäcklund transformations.

It is easy to prove that

α̃n(t) = αn−1(t) + log(ψn(t; λ1)) (18)

ψ̃n(t; λ) = ψn−1(t; λ) ψn(t; λ1)

ψn−1(t; λ1)
− ψn(t; λ) (19)

is a Darboux transformation for the Lax operator (1), once we use the transformation (10) to
express An(t), Bn(t) and Cn(t) in terms of αn(t). Equations (18), (19) express the new field
α̃n(t) and the corresponding solution of the linear problem ψ̃n(t; λ) in terms of the old field
αn(t) and of the corresponding solution of the linear problem ψn(t; λ) at the generic point λ
of the spectrum and at a given point of the spectrum λ1. Using equations (18), (19) we can
construct a hierarchy of explicit solutions of equation (11). Starting from the trivial solution
αn(t) = 0 from equations (10) we have that Bn = 0, Cn = 1 and An = 0. So, the ‘naked’ Lax
pair reads

ψn+2(t; λ) + ψn−1(t; λ) = λψn(t; λ)
dψn(t; λ)

dt
= ψn−1(t; λ).

(20)

Equations (20) can be solved explicitly. Defining λ = z2 + 1
z

we have

ψn(t; λ) =
3∑

j=1

γjz
n
j et/zj (21)

where zj is a solution of the third-order algebraic equation

z3
j − λzj + 1 = 0. (22)

All the solutions of equation (22) can be expressed in terms of one arbitrary parameter
(corresponding to the arbitrary value of λ), say z. So, we have

z2 = z

z3 = −1

2
z

[
1 +

(
1 +

4

z3

)1/2]

z1 = −1

2
z

[
1 −

(
1 +

4

z3

)1/2]
.

(23)

From equation (18) we get real solutions for α̃n only if z is real and either z > 0 or z < −22/3.
Morever, to get real solutions for α̃n, then ψ̃n(t; λ1), given by equation (21), also has to be
positive. This can be accomplished only if γ3 = 0 when z > 0. In figure 1 we show the
resulting solution.

Starting from the Darboux transformation (18), (19) we can construct a Bäcklund
transformation by using the spectral problem (1). In terms of the variables αn we have

eα̃n+2−αn+1 + α̈n+1e2αn+1−2αn−αn+2+α̃n+1 + (α̇n − α̇n+1)e
α̃n−αn−1

+ eαn−1−2αn+αn+1+α̃n−1−αn−2 = λ1eα̃n−αn−1 . (24)

To conclude, let us mention that equation (11) can be obtained not only for (2) but for any
possible L of the third order. In fact, choosing in place of (2)

L = wn(t)E
−2 + vn(t)E

−1 + un(t) + E (25)
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Figure 1. The first non-trivial exact solution of the
differential–difference equation (11) αn(t) for z2 = 2, γ1 =
1, γ2 = 1, γ3 = 0 and t = 0.

and defining

wn(t) = −e(αn+1(t)−αn(t)−αn−1+αn−2(t)),

vn(t) = d2αn(t)

dt2

un(t) = dαn+1(t)

dt
− dαn(t)

dt

(26)

or choosing

L = wn(t)E
+2 + vn(t) + un(t) + E−1 (27)

and defining

wn(t) = −e(αn+2(t)−αn+1(t)−αn+αn−1(t))

vn(t) = d2αn(t)

dt2

un(t) = dαn(t)

dt
− dαn−1(t)

dt

(28)

or choosing

L = wn(t)E
−1 + vn(t) + un(t)E + E−2 (29)

and defining

un(t) = e(αn+1(t)−2αn(t)+αn−1(t))

vn(t) = dαn(t)

dt
− dαn−1(t)

dt

wn(t) = d2αn−1

dt2
e(−αn−2(t)+2αn−1(t)−αn(t))

(30)

we get always equation (11).
In conclusion, in this letter we have presented the recursion operator for a third-order

discrete spectral problem. We have shown how the simplest system of equations of this
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hierarchy can be written down as a differential–difference equation of Toda type. By
considering non-isospectral deformations of the third-order spectral problem we obtain a new
class of differential–difference equations with n dependent coeffcients. Using a Darboux
transformation we have written down an explicit solution for equation (11). We are currently
looking for applications of equation (11) and to some extension of this work to higher-order
spectral problems.

The research of MG is partially supported by grants from NSERC of Canada and FCAR
du Québec. The research reported here is also partly supported by a Cultural Agreement
between Universitá Roma Tre and Université de Montréal. Both authors thank the CRM of
the Université de Montréal for its kind hospitality.
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